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Ultrasonic wave velocities for 14 different modes were obtained on two di fferently oriented single-crystal 
antimony cubes from the time between successive unrecli(ied radio-frequency rulse echoes. This redundant 
set of data was fitted by a least-squares technique to Voigt theory to yield the six room-temperature adia
batic c1astic-stifTncss constants. In units of 1010 dyn/cm', cl1=99.4(1), C33=44.5(9), c .. =39.5(5), CGG 

=34.2(3), clI=26.4(4), and CI4=+21.6(4), the positive sign for CI4 following from our choice of positive 
Cartesian axes. When similarly treated, Eckstein , Lmvson, and Reneker's bismuth data yield in these same 
units: Cl1 =63.22, caa=38.11, Cj4= 11.30, C&6= 19.40, CI3= 24.40±0.09, C14= +7.20. Also included are a visual 
method of fixing the laboratory coordinate system in antimony by means of an imperfect cleavage plane, 
a calculation of the pure-mode directions in the mirror rlane, a simple formllla for choosing the nonextra
neous value of ell for trigonal crystals having six independent clastic constants without resorting to lattice
stability criteria, and n calculation of the deviation of elastic-wave parlicle displacement and energy-nux di
rections from the propagation direction. For waves propa,::atin ,:: in the (n,I,I) and (0,1,1) directions, the 
particle-displacement deviations for antimony and bismuth do not exceed 15° Ilili l 13°, respectively, and 
corresponding enerl-(y-nux deviations up to 45° and 27° nre ohtllined. 

1. INTRODUCTION 

I N the well-designed experiment of Eckstein, Lawson, 
and Reneker1 (hereinafter referred to as ELR), 

t.rigonal bismuth's six adiabatic elastic stiffness con
stants were determined ·from measurements of acousl ic
wave propagalion. An extension of their work to anli
mony seemed natural, and a recently determined sel of 
antimony constants is desirable, considering both (1) 
the fact that currently available antimony crystals arc 
purer and less strained than those available to Dridg
man2 and (2) the different measuring technique. The 
design of our experiment is essentially that of ELR, hUl 
our data arc principally taken on just two differenLly 
oriented specimens, and our method of calculating the 
elastic constants differs in that we use a least-squares 
procedure. (For completeness and clarity of presenta
tion we incorporate the basic data and equations given 
by ELR, and other material as appropriate; the reader 
is nevertheless referred to ELR for points not covered, 
and for additional references.) In addition, an inspection 
method of establishing laboratory axes in antimony is 
described; a simple formula is given for obtaining the 
non extraneous value of C13; the directions of pure-mode 
pro~agation in the mirror plane are evaluated; and the 
directions of particle displacement and energy flux for 
certain modes are calculated and compared with the 
wave-propagation direction. ELR's 14 bismuth veloci
ties are also reanalyzed by our procedures, and a com
parison between the two similar elements is made. 

In the next section of this paper, some well-known 
crystallographic and cleavage data for antimony are 
introduced to provide a background for presenting the 
convention used for choosing coordinate axes in the 
crystal. This is followed by sections on the design of the 
experiment, experimental detail and the method of 
calculation of the constants. In the remaining sections 

the limitations of our analysis, t.he clastic constants, and 
acotlstoelastic wave-propagation properties III nI11SO

tropic antimony and bisllluth are discussed, 

II. CRYSTALLOGRAPHIC DATA AND CLEAVAGE 
PROPERTIES OF ANTIMONY 

Like bismuth, antimony's primitive cell is a 2 atom/ 
cell rhombohedron (Fig. 1) with one atom at each 
rorner and a ninth slightly displaced from the midpoint 
in lhe (1,1,1) direction. The nearest-neighbor distances3 

are 2.87 ,uld 3.37 A, the density is 6.7 g/cm3, the 
rhombohedral angle is 57°6', and the cell edge is 4.49 A 
at room temperature.4 It is brittle. The principal 
cleavage plane at room temperature is the (111) plane 
and fracture occurs between atoms having the larger 
nearest-neighbor distance; the secondary cleavarre plane 
is of the (211) type indexed in the primitive cell 6,6 and 
is relatively imperfect. These latter planes, spok~n of as 
dominant secondary cleavage planes by one of us 7 

intersect the (111) plane in lines giving the directions ~f 
the three equivn.lcn L twofold axes. These axes are normal 
to the mirror planes which contain the trigonal and 
bisectrix axes. The plane's position in relation to a 
right-handed Cartesian coordinate system fixed in the 
crystal, or what is equivalent, the position of the plane's 
Laue spot reflection, can be used (see Sec. IV) to dis
tinguish between two possible choices for such coordi
nate systems in which the signs of C14 and certain 
magnetoresistance coefficients? change. Our choice of 
coordinate system and the convention used to choose it 

3 W. L. Bragg, A /olllic Stmclure of MiticraJs (Cornei1 University 
Press, Tlhaca, New York, 1937) . 

• C. S. Barret, P. Cucka, and K. Haefner Acta Cryst. 16 451 
(1963). " 

b C. Palache, H. Berman, and C. Frondel DOlla's Systelll of 
Millcralop (John Wiley & Sons, Inc., New York, 1955), Vo!.l. 

• Relative to a hexagonal cell, this plane is of the (10i4) type. 
Ref~rred t? ~ larger eight-atom-containing nearly face-centered 
cubiC cell, It IS of the (011) type (also shown in Fig. 1). 

1 Y. Eckstein, A. W. Lawson, and D . H. Reneker, J. Appl. Phys. 7 Seymour Epstein, J. Electrochem. Soc. 109 738 (1962)' 
31, 1535 (19C?O). • Seymour Epstem and H. J. Juretschke Phys. Rev. 129 1148 

2 P. W. Bridgman, Proe. Am. Acad. Arts SCI. 60, 365 (1925). (1963). " 
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l'1G. 1. Primitive ami ncarly cuhic 
rhombohedral cells, stereogram of (01 i) 
zone (norillal to the page) of the nearly 
cubic ccll, SIJccilllen or icntation (lIld 
p.ositive-scnsel Cartcsian axcs, and posi
tlOI~ of two pronounceu cleaval;e planes of 
antlnlony. ai, a2, and a. are the rhombo
hcdral-ccll axis vectors for the primitive 
cell and the outward direction of the 
projection of anyone of them, a, for 
examJllc, on a plane normal to the unique 
[111J direction is taken as +Y. al+a2 
+aa is chosen as +Z. A I are the cell edges 
o[ the nearly cubic cell. _ + Y is along 
(2,1,1) and +X along [Ol1J. 

nre arbitrary. So that the signs of CI4 for <llltil llllJl\' :111<1 

bismuth cnn be directly compared, we adop t j: 1.10: 's 
s~eciIication for the positive-axes senses, as silo\\11 in 
Fig. 1. 

The axes senses in the specimens were determined 
upon indexing a Laue diagram. (See Sec. IV.) 

III. DESIGN OF EXPERIMENT 

As outlined by ELR and their cited references, the 
six Voigt elastic stiffness constants for the class R311/. are 
represented by 

Cll C12 C13 C14 0 0 
(12 Cll C13 -C14 0 0 

C;J= C13 C13 C33 0 0 0 
C14 -(14 0 C44 0 0 
0 0 0 0 C44 C14 

0 0 0 0 C14 coo 

where COG= (Cl1-C12)/2. For acoustoelastic waves propa
gating with direction cosines l, m, n, in this order rela
tive to the X, Y, and Z axes of a right-handed coordinate 
system, three values for the velocities (one longitudinal 
and two transverse) satisfy the Christoffel determinant. 
Symmetry, however, prevents one from choosing six of 
the nine possible modes which would allow the direct 
(and accurate) determination of the' six constants on 
?ne simply shaped oriented specimen. Consequently, it 
IS necessary to employ a minimum of two differently 
oriented single-crystal cubes and more than the mini
mum of six modes required in principle to determine six 
constants. All but C13 are best arrived at when (1) they 
derive from velocities of three modes propagating along 
each coordinate-axis direction on one specimen and (2) 
the velocity data so obtained are self-consistent. 
Accordingly, one of the two specimens needed is a cube 
with faces normal to the principal axes. To determine 
C13 symmetry requires one to employ a mode 'propagat
ing at any angle with the trigonal axis other than 0°, 
90°, and 180° (plus four of the five previously discussed 
constants). Two directions (4'5° and 135° with the Y 

-.y 
'[iff" Cl£AVAC[ PlAN[, (1),11 

I.,W[CJ (I £Avm PlII[ , (0,1,11 

axis in the Y-Z mirror plane) exist for which C13 makes 
ils lIlaximlim contribution to the efiective stifTness con
Slan t, and our second cube is oriented with faces normal 
to these direct ions and normal to the X direction. To 
ins\lI'e that the live already determined values for the 
constants arc the same for this cube, velocity data are 
oblained for its nine possible modes. 

In all, J8 velocity measuremenls arc required. Be
cause one of them corresponds to a doubly degenerate 
shear mode along the Z axis, and three others repeat the 
modes along the X axis on the second orientation, only 
14 velocities need be analyzed in detail. Clearly, these 
must satisfy 8 redundancy relations for a meaningful 
calculation of the six elastic constants. The 14 expres
sions for the effective stiffness constants pv; are listed 
in Table 1. (The symbols VI through V14 are chosen to 
correspond to ELR's arbitrary assignment.) Also in
cluded are the wave-propagation and transducer
polarization-direction cosines, the numerical values of 
the avernged observed velocities, and the experimental 
tolerances. 

IV. EXPERIMENTAL DETAIL 

The velocity of sound was determined by the ultra
sonic pulse-echo method. A pulse width of approxi
mately 2 /lsec wide was used and the distance between 
the maximum amplitude of successive unrectiJied radio
frequency pulses was used as a measure of the transit 
time.8 Transit-time error efIects were also investigated 
by means of the dummy-transducer method.9 Times 
were measured on a Tektronix 585A oscilloscope whose 
timing circuit was checked with a counter (Hewlett
Packard 524B) and a quartz signal generator (Tek
tronix Time Marker Generator 180-S1). An Arenberg 
PG-65-C pulse generator, preamplifier PA-620-B and 
wideband amplifier WA-600-B were used to gel;erate 
and amplify the pulses. An X- or Y-cut-quartz trans
ducer of 10- or 5-Mc/sec fundamental frequency func-

S S. Eros a.nd J. R. Reitz, J. App!. Phys. 29, 683 (1958). 
g C. S. SmIth and J; W. Burns, J. App!. Phys. 24, 15 (1953). 
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TADLE I . EfTective stifTness constant eq uations and experimental antimony velocities. 

Eq. EITective stifTness constant equations 
No. (p, the material density) 

(I) pVI'=CII 
(2) pV,'=![ (CU+CH) + {(CH-CC6)'+4c,,') I oJ 
(3) pv,'= ![(cee+cu) - {(Cu-cn.)'+4c .. ') 1 '1 
(4) pv,'=cu= i (CII-CI2) 
(S) pv.'=i[(CII+CH)+ f (cu-clI)'+4clI' )1 ~ 1 
(6) pVa'=![ (CI1+cu) - {(c,,-clI)'+4 c,,") I 'J 
(7) pV7'=CU 
(8) pv,'=c .. 
(9) 2pv,'= i (CII+C •• )+C .. -C14 

+ {(!clI-icu-C14)'+ (cu+c .. - C .. )') I/2 
(10) 2pvll'~ i (CII+CU) +c .. -cu 

- {(;cl1-icu-cu)'+ (cu+cu- c,,)' } 1/2 
(II) pVIO'= Hcoo+c •• )+cu 
(12) pvu'= !(cu+c •• )-cu 
(13) 2pV12' =; (CII +CII) +C .. +C14 

+ { (;clI-icu+c .. )'+ (cu+c..-I CI'I)2 ) 1/2 
(14) 2pV14'= i (Cl1+CU)+C .. +cu 

- {(;Cl1-;CU+C14)'+ (CI3+CWj-CII)' } 1/2 

tioned as the transmitting and receiving transuucer. 
Measurements were taken between 5 and 70 Mc. The 
frequency which gave the sharpest pattern for a. partic
ular mode is the one at which the velocity was meas
ured. These best frequencies were scattered throughou t 
this range. More than one frequency gave a decipherable 
pattern for a given mode, but most frequencies did nolo 
It was, however, possible to obtain a cruue check of the 
frequency dependence of V7. This result together with 
qualitative results for other modes at two frequencies 
show no frequency dependence within the specified 
experimental tolerances. . 

Salol was used to bond the transducer to the speci
men surface which was either a natural cleavage surface, 
the (111) plane, for slab specimens, or a comparaLively 
rougher spark-cut surface for the two specimens whose 
velocities were actually used to obtain the constants. 
The slab specimens, cleaved at opposite faces and of 
varying thickness and width, were used primarily to 
check the eITect of spark-cut surfaces on the coupling of 
energy into and out of the specimens and on the reflec
tion of energy at the back surface into the spec;:imen. No 
deleterious effects of spark cutting were seen. Another 
experimental check is that our values for VI, V4, and V7 

are within 4% of Eckstein'slo 77~K velocities which are, 
respectively, 3.85, 4.08, and 2.58 106 cm/sec. 

Zone-refined antimony, Cominco Grade 69, 99.999% 
pure, was the stock for our slabs and cubes. (Initially, 
stock which was very likely less pure was used and at 
the few points where checks were made yielded essen
tially the same results.) 

The two differently oriented single-crystal cubesl 

10 Y. Eckstein, Phys. Rev. 192, 12 (1963). 

Direction cosines of Experimental 
propagation transducer velocity 

vecLor polarizaLion 106 em/sec 

100 100 3.92±2% 
001 3.00±I.S% 
010 l.S3±2.6% 

010 100 2.23±l.S% 
010 3.98±1.7% 
001 2.24±2% 

001 001 2.60±1.2% 
100 or 010 2.4S±I.2% 

0, 1/V'l., 1/'1l: 0, 1/V'l., I/V'l. 3.12±1.9% 

0, -1/V'l., 1/V'l. 1.2S±1% 
100 2.87±4.1% 

0, -1/V'l., INZ 100 l.S4±10% 

0, -1/..t1.,I/V'l. 4.14±1.8% 

0, 1/V'l., 1/V'l. 1.S0±6% 

12 mm on edge, were prepared by spark cuttingll their 
faces within ± 1°, as required for our experimental 
design. Strains were checked for by x-ray diITraction. 

13ack-renection Laue diagrams were used to choose 
the posiLive X, Y, and Z axes directions. They were 
indexed by idenLifying spolS belonging to the (011) zone 
(in the mirror pl:llle) on each side of the (111) pole (see 
Fig. l)- in particular, the (3ii), (411), (511), (100), 
(011), and (111) spots. (These indices are based on the 
large, nearly cubic, rhombohedral cell containing 8 
atoms; the notation is Vickers.)12 

Part of Vickers' stereogram is reconstrucled in Fig. 1 
in order to show the relative positions of the secondary 
cleavage plane to the axes. This plane was positively 
identified by comparing the angle between the second
ary cleavage plane and the (111) plane as measured on 
cleaved specimens, fLrstly with the estimated angle the 
(011) spot makes with the (111) spot, and next with the 
value for this angle given by Dana. 6 Our observations 
of secondary cleavages on many antimony rods and 
slabs show this plane to be easily observable and to 
slant in a unique direction. Accordingly, a convenient 
way of identifying the right-handed coordinate system 
used in the crystal is shown in Fig. 1. With the planes . 
sloping downward to the right, the positive Y axis is 
directed from left to right, positive X toward the ob
server, and positive Z upward. 

V. EXPERIMENTAL ANALYSIS AND RESULTS 

Our velocity values, shown in Table I, represent 
averages of the average velocity calculated from me as-

11 H. J. Ehlers, D. F. Kolesar, Rev. Sci. !nstr. 34, 10S4 (N) 
(1963) . 

12 W. Vickers, J. Metals 9, 827 (1957) . 

.. 
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urements of the time between successive echoe:, Ill,U\c 
over periods of weeks. They are rounded off to th e l.lst 
significant figure and the tolerances represent th e I:tre;rr 
of the fluctuations in these or the accuracy of a spcrilic 
measurement. Transit-time errors attribut:tble to tlIe 
transducer, determined after all the velocity c1:tta were 
completed, are about 1%. They are not applied because 
(1) they could not be systematically obtained, (2) 
except for vo's they are less than the over-all velocity 
tolerances specified for e:tch velocity, and (3) we have 
no information on the fluctuations in the tmnsit·time 
correction measurements themselves. Taken at f:tce 
value, a 1% :tverage correction to the velocities would 
scale the antimony stiffness values by 2%, 

Before the numerical evaluation of the constants was 
carried out, the general features of the velocity data 
were examined for consistency with the equations of 
Table I as follows: VIO being greater than VIa clearly fixes 
C14 as positive for the axes senses chosen. In turn, this 
requires that V122+VH2 be greater than Vg2+vn2 ; V22> VI02; 
V132> va2; and V122> vv2, which is indeed the case within 
experimental error. These inequalities are compatible 
with assigning the larger velocity value of two coupled 
modes, normally :tssociated with the longitudinalmor\e, 
to the positive radical of the relevant expressions, i.e., 
in the pairs V2 and V3, V4 and Vo, Vg and VII, and Vu and 
Vu, the first velocity is the greater one. Next, the eight 
redundancy relations, a more sensitive and detailed test 
of the data than the trace relations used by ELH., were 
evaluated; one obtains that Vn = 1.25± 1% for antimony 
is incompatible with the others in this formali~lIl . 
Consequently, attempts to fit to it and its inclusion in 
a least-squares function are meaningless and it is ignored 
in our calculation of antimony's constants. A p()~"ilile 
reason for vn's incompatibility is discussed in the sect ion 
on elastic-wave refraction. 

Generally stated, our least-squares procedure is based 
on adjusting each of the 14 squares of the velocilies 
within experimental error so that they give a minimum 
deviation from the central experimental-velocity
squared values and, when inserted in Eqs. (1) through 
(14), yield a common value for each of the six stiffness 
constants. 

The least-squares function us.ed is 

where the sulJsc ripls a and 0 signify adjusted and ob
serve( l, and Ll1'. is the experimental uncertainty in the 
iLh velocity. Th is task is simpliued by initially selecting 
those velocities and combinations of velocities which 
are related to tlte smalles t number of stiffness constants 
and then extending the selection in steps to include more 
and more velocities until all the constants are obtained, 
As more velocilies 1tre included, the previously obtained 
values are readjuste(l when necessary, Specifically, fIrst 
Vb2, vi, VI02+VI32, and V22+V32 are adjusted and CH and 
coo obtained. With these values and VI02-V132 and 
V22- V3Z, a common value for (14 is obtained, usually upon 
readjustment of the previously obtained velocities and 
constants. After this, C11 is similarly obtained but from 
V12, V42+V02, and (1,~2_t'02)2, and C33 from V72, V02+VI12, and 
VI22+VI42. Finally CI3 is obt:tined from (V02-VI12)2 and 
(VJ22_ V142)2, ag1tin readjusting the already obtained 
values as necess:try. Because each of the functions from 
which CI~ is c,t\clIlable yields two values, the common 
one is, of course, the proper one. (Antimony ca.lculations 
involving incompatible VII are omitted.) 

The results of this procedure for antimony and for the 
complete bismuth data of ELR, and the results of other 
workers and their procedures, are presented in Tables 
II, ITT, and IV. Th ese are next discussed. 

VI. DISCUSSION 

A. Nature and Limitations of Fit 

1n the course of Jilting the antimony data, it became 
clear that the 14 equations of Table I intersect in a 
weJl-defmed region of a 6-dimensional stiffness-constant 
space and that only a very narrow range of values for 
the constants is possible. The bounding limits of this 
region are, roughly, such that a change greater than 5% 
in almost any constant appears sufficient to bring one 
or more of the 14 velocities outside the experimental 
range. Accordingly, the basis for choosing the constants 

TADLE II.:Elastic stilTness constants at room temperature, 

'11 '12 '11 CH 'n '01< eGG Source 

Sb 99.4(1) 30.9 (1) 26.4(4) +21.6(4) 44.5(9) 39.5 (5) 34.2 (5) This work, least squares 
99.31 44.59 Eckstein,' transmission 

technique at 77°K 
81.00 11.00 +18.00 43.60 33.60 35.00 Leventhal,b echo technique 
79.20 24.70 26.10 +11.00 42.70 28.50 27.30 Bridgman,· static technique 

Bi 63.22 24.42 24.40 + 7.20 38.11 11.30 19.40 ELR,d least-squares recalculation 
±.09 

ELR,d transmission technique 63.50 24.70 24.50 + 7.23 38.10 11.30 19.40 
21.50 + 7.20 Kor's,· recalculation of ELR 

62.90 35.00 21.10 - 4.23 44.00 10.84 13.37 Bridgman,O static technique 
Units: 1010 dyn/cm' . 

• See Ref. 10. b See Ref, 13 • oSee Ref, 2. d See Ref. I. • See Ref. 1'1. 
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TADLE III. Elastic compliance constants at room temperature. 

-s" -S14 S,' SH S66 Source 

Sb 1~2 ~1 
17.7 3.8 

5.9 12.2 29.5 38.6 44.6 This work, least squares 
8.5 8.0 33.8 41 43 Bridgman-

Di 25.74 8.01 11.35 21.50 40.77 115.90 67.51 ELR,b least-squares recalculation 
26.9 14.0 

Units: 10-11 cm2/dyn . 
6.2 -16.0 28.7 104.8 81.2 Bridgman" 

• See Ref. 2. b See Ref. I. 

T ADLE IV. Calculated and experim cntal limits of velocities. 

Sb 
Lower Least-squares lII'p.' r 

exp limit calculation eXI ' I Il lil 

VI 3.84 3.85~2) li,(I() 
V2 2.95 2.96 0) ,'l,ot 
v. 1.49 1.50(1) 1.57 
lit 3.91 3.98(5) ·1.OS 
V6 2.20 2.26~0) 2.27 
Va 2.19 2,20 4) 2.21l 
117 2.57 2.58(0) 2.63 
V8 2.42 2.43 (0) 2.·17 
vo 3.06 3.17 ~O) 3.18 
1110 2.75 2.95 6) 2.98 
v" 1.24 1.86 (6) 1.26 
V12 4.06 4.17 ~5) 4.21 
VII 1.38 1.50 9) 1.69 
IItt 1.41 

Units: 106 em/sec. 
1.56(2) 1.59 

was relaxed to obtaining a near-least-squares minimum 
fit. We estimate our values, presented in Table II, to be 
within about ±2% of a true least-squares minimum 
fit and we note that such a fit would be as uneven as the 
fit presented. 

When applied to ELR's bismuth data, our procedure 
yields essentially one set of constants except for Cl3 
which may range within ±O.09 of the value given 
without causing anyone velocity to be calculated 
outside its experimental limit. That one set of values 
obtains is readily evident from the facts that our values 
differ little from ELR's, yet five of their calculated 
velocities are outside the experimental range and just 
one of ours is at the lower experimental limit. This fit is 
characterizable as even and quite good, considering the 
very small velocity tolerances ELR specify. 

B. Comparison of Constants and Direct 
Calculation of C13 

Included in Table II with our constants are el l and 
(33 calculated from Eckstein'slo 77°K velocity data for 
antimony, ELR's bismuth constants values, bismuth 
and antimony values calculated from Bridgman's2 early 
isothermal compliance measurements, unpublished 
antimony values of LeventhaP3 and some calculated 
bismuth values of Kor,l4 Agreement with Eckstein's Cll 

., E. Leventhal, MS thesis, Polytechnic Institute of Brooklyn, 
New York, 1959 (unpublished). 

14 S. K. Kor, PhYSlca 28, 837 (1963). 

Bi 
Lowcr Least-squares ELR Upper 

cxp limit calculation calculation exp limit 

2.518 2.540 2.545 2.562 
1.541 1.552 1.6J5 1.559 
O.1l5 1 O.H51 0.667 0.859 
2.553 2.559 2.565 2.589 
i.3(m 1.407 1.406 1.416 
1.0 16 1.026 1.026 1.028 
1.'157 1.971 1.571 1.987 
I.O(d 1.073 1.073 1.085 
2.063 2.067 2.109 2.101 
LSU5 1.517 1.518 1.539 
1.14-~ 1.147 1.071 1.156 
2.40U 2.437 . 2.491 2.482 
0.907 0.912 0.910 0.913 
1.0·~9 1.508 0.9J7 1.061 

and C33 for antimony has already been pointed out in 
Sec. IV (by noting that his VI and V7 and ours are the 
s;une); and except for Cll, agreement with Leventhal is 
fair. Although the nature of our original stock and our 
method of preparation are preferable to Leventhal's, 
we cannot account for the discrepancies on the basis 
that our crystals are purer and less strained. We have 
already 1101 eel that V7 and Vs were also obtained on 
cleaved surfaces and that these values agreed well with 
the values obt:1.ined on our cube. The purity of the 
cleaved specimen was less than that of the cube (al
though very likely still purer than Leventhal's). Fur
thermore, VD and Vn were again measured after the speci
men was (accidentally) damaged. A 3-mm transducer 
was placed next to the cracked region where no visible 
signs of damage were obvious; no change in the velocity 
values were found. 

Our recalculation of the bismuth constants yields 
essent ially ELR's values within about 1% or less. Com
pared to Bridgman's results, our individual constants 
fit poorly for both antimony and bismuth, even al10wing 
for the farge cumulative error introduced for some of the 
constants by the inverse tensor transformation and- the 
negligibly small isothermal corrections. Uniform and 
over-all agreement is not necessarily to be expected 
since some of his individual values are adjusted to fit 
his linear und volume compressibilities. On the other 
hand, the compressibilities calculated from our data do 
agree with his directly measured unadjusted compressi-
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TAnLE V. Linear and volume compressibililies. 
Units: 1O-l3cm2/dyne. 

Sb Di 

This work Bridgman-
(Ref. 2) 

ELR, 
recalculated Bridgman' 

(Ref. 2) 

k. 4.1 5040 6.38 3.59 
k. 17.5 16.84 18.07 16.13 
k. 25.8 27.64 30.83 29.31 

• Isothermal values; Isothermal·adlabatlc correction Is l1egligilJk. 

bilities (Table V) within appropriately calculated 
tolerances. 

Agreement with Kor's nominal value for Cia is nol 
expected for it is extremely sensitive to the velocities. 
Kor calculates CIa from particular ELR vclocitie~ with
out first adjusting them to be compatible with th e 
others. Consequently, our value for Cl3 is to be prdnrl'li . 

Cia'S extreme sensitivity can be appreciated fro m the 
following formula : 

p2(VI2a4+ VHa4)- p2(VOa4+Vlla 4) 

C13= 

where the symbols have their previously defined mean
ings. In principle, this expression can be used to calcu
late CI3 directly, the extraneous root introduced by the 
quadratic already having been eliminated. We em
phasize that properly calculated velocities an d con
stants must be inserted unless one is willing to ;It cepl :tn 
uncertainty of 100% or more, and note that th, , dll<~ 
of Cu is, as it should be, independent of the con "L'1l i ion 
used to determine the sign of C14 as the signs of the 
velocity function in the numerator and C14 ch,l11ge 
together. With this formula, it is necessary nei Lher to 
employ the sign considerations outlined by Mayer and 
Parkerl6 nor the conceivably less-discriminating strain
energy stability criteria. IG An analogous expression for 
CJ3 in hexagonal systems, where C14 is identically zero, is 
not possible. 

C. Elastic-Wave Refraction 

In our attempt to understand VlI'S incompati bility 
for antimony, the 4S o and 13So data were further 
analyzed in terms of the theory of plane elastic waves 
in aelotropic media.'7 Particle displacement and cnergy
flux directions, and the pure-mode direction in th e Y-Z 
mirror plane, are calculated for both antimony and 
bismuth and compared with each other, and with the 
propagation and transducer-polarization directions. An 
outline of the calculation and the energy-flux expres-

16 W. G. Mayer and P. M. Parker, Acta Cryst. 14, 725 (196t). 
Ie G. A. Alers and J. R. Neighbors, J. App\. Pbys. 28,1514 (1957); 

L. J. Teutonico, ibid. 32, 119 (1961). 
17 M. J. P. Musgrave, Proc. Roy. Soc. (London) A226, 339 

(1954); P. C. Waterman, Phys. Rev. 113, 1240 (1959); P . E. 
Borgnjs, ibid. 98, 1000 (1955) j A. E. H. Love, A Treatise 0'1 the 
Mathematical Theory of Elasticity (Dover Publications, Inc., 
New York, 1944). . 
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sions obt ained are given in the Appendix; the results 
of lh is calculaLion, summarized in Fig. 2, arc next 
discussed. 

Our analysis shows that the unit displacement eigen
vectors associated with the Vg and Vu modes, AD and 
AU, deviate by _40 for antimony and -S.2° for 
bismuth from the t.ransducer polarization directions 
used to excite these modes. This small value is favorable 
for exciting th e 1111 mode in antimony, giving rise to the 
th rn! well-dcfined pulses displayed by the oscilloscope . 
Th is same display obtains with either the 3-mm
di ameter or the ~ - in.-sC}uare transducers. The cor
resJlonding deviaLions for A 12 and A 14 are + 14.6° for 
antimony and + 12.40 for bismuLh. These deviations 
arc not of a nature which would explain our egregious 
VII, nor do the pure shear-mode directions in the Y-Z 
planc which arc 117 0 for antimony and 1070 for bismuth. 
II () \\,cver, lhc dcviation of the energy flux, or ray 
ve1o( 'ity, from the normal is about4So. For our dimen
sions, energy is dell~'ctetl from a side before reaching the 
opposi te rell ect ing face. Upon deflection the energy is 
refracted into spurious modes, giving rise to the pulses 
di sp l;.yed. No pulsc was found that corresponds with 
VII calcul:Lted. This is due to the fact that in relation to 
thc I:u'ge intrinsic allenuation of antimony not enough 
energy flows along the wave-normal direction to reach 
the opposit.e face and to be echoed back to the trans
ducer for detection. 

We note th at the smaller the flux deviat.ion angle, the 
more numerous and better defined are the echoes, and 
that spurious pulses exist for almost every mode. 
Conical refract.ion effects along the triad axis, predicted 
by Waterman,17 verified by Papadakis on rock salt and 
calcite,'S and noticed by ELR in bism~th, did not 
interfere with obtaining decipherable echo patterns. 
For antimony the conical semi-angle in 28°40'; for 
bismuth, 32°30'. 

Refraction effects were observed for either the 3-mm
diam or ~-in -square transducers as sender-receiver. 
:M any of the cli5playS obtained with the larger one con
tained more spurious pulses than most displays ob
tained with the smaller one, depending apparently upon 
the propagation direction and the mode. 

H is not possible for us to comment on the efIects of 
the large deviation angles in bismuth since we do not 
have precise information on ELR's specimen geometry. 
We can only remark that the combined ~ffects of 
specimen size, refraction, and attenuation are not as . 
severe as they are in antimony. All of ELR's velocities 
are compatible and Eckstein'9 reports that his antimony 
echo displays arc not as clean as they are for bismuth. 

D. General Comments 

Our experiment and analysis are based on plane 
elastic waves in extended media, and our specimens are 

18 E. Papadakis, J. App\. Phys. 34, 2168 (1963). 
IV Y. Eckstein (private communication). 
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45' NODES 

K - (0,1/./2,"./2) 

+Z 

(0) 

PURE NODE +Z DIRECTION 
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\ 
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135' MODES 
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-Y--------------~--~ 

"U . ,It . 
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1'10. 2. Energy density flow, displacement, propagation and pure-mode directions in Y-Z mirror plane. lIK' is the angle between the 
vectors K and s where s is any of the vectors Aa and pa. The signs for OK' indicate placement at opposite sides of K with +15 counter
clockwise. Parts (a) and (b) are for antimony, (c) and (d) for bismuth; (a) and (c) are for the 45' modes, and (b) and (d) for the 135' 
modes. 

of finite dimensions. For isotropic circular bars the 
dilatational and distortional wave phase veloci ties have 
been shown by Pochhammer20 •21 to depend on the ratio 
of the cross section radius to wavelength a/A and upon 
two functions of the Lame stiffness constants. Chree22 

extended Pochhammer's results to noncircular, normal 

20 A. E. H. Love, A Treatise on tlte M atltematical Theory of 
Elasticity (Dover Publications, Inc., New York, 1944), p. 287. 

II H. Kolsky, Stress Waves in Solids (Dover Publications, Inc., 
New York, 1963), p. 54. 

22 A. E. H. Love, A Treatise on tlte Matltematical Theory of 
Elasticity (Dover Publications, Inc., New York, 1944), p. 290. 

cross-sect ioned cylinders and to nonisotropic media. In 
the absence of an exact treatment giving the longi
tudinal and two transverse phase velocities in aniso
tropic cubes it is reasonable to assume that the size of 
the correction for each phase velocity would be different. 
If these corrections are large in relation to the experi
mental errors, fitting the plane-wave formalism of 
redundancy eight to the 14 corrected velocities is not 
assured. That we are able to do so, however, suggests 
that the corrections are not significant. Our large 
minimum value of about 2S for VA, where k is the radius 
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of gyration of our noncircular section, suggests that 
these corrections would also be negligible for data with 
much narrower tolerances than we arc able to specify. 
Our data cannot directly support this concl \lsion rol' it 
is possible that our large tolerances rcsult in part frO ill 
these effects. 

Within the context of the above cOJ1si<ier ;1I i'lIls, \\'e 
believe our experiment to be a reasonable cOlllpromise 
as regards both the usc of the plane clast ic \\,ave 
formalism in extended media for our [mite sized spcci
mens, and the use of predominantly energy-refracting 
modes in determining the elastic constanLs. Juuging 
from the topological [Ltting procedure presented, we 
estimate that the values given are accurate to within 
about 5%. 

In this section, we outline the general procedure used 
to calculate the energy flow components and present the 
expressions obtained for the 45 0 (l,1II ,It: : 0,1 /v'2',1/v'1) 
and 1350 (l,m,":: 0, -1/v'1, 1/V'l) propagation direc
tions. 

The ith Cartesian component of energy 110w, J';, is 
given by Love1o as the negative of the scalar product of 
the component of the stress tensor on the surface normal 
to the ith direction, Ti , with the particle displacement 
velocity u: 

(Al) 
The displacement 

u=pA exp(j(wt-K·r» 

has components t~; where i runs from 1 to 3 correspond
ing to the x, y, z or Xl, X2, X3 directions. A, K, ami rare 
in this order the particle displacement eigenvector of 
unit magnitude, the wave propagation vector, and the 
field point vector, and have components Ai, Ie, ~·i. pis 
the scalar amplitude of the displacement; Ti has COI11-

ponents XI/, j= 1,2,3. These are related in the usual 
way to the strains Crt through the stiffness constants by 

(A3) 

summed for r,s= 1,2,3 j ~rt is the Kronecker delta. In 
terms of the displacements, 

(au, au,)/ 
e,.= -+- (l+~rt). 

ax, ax, 
(A4) 

For a particular mode g, the components of displace
ment, written as 

fti U= puAiu exp[j(wt- Ku. r)], (AS) 

are substituted into (A1) and (A4) , and thc rl'SIIi t of 
substituting (A4) into (A3) in turn put into (Al) . We 
finally obtain 

_ (pow)2 
---<cij"A/A,ol,o, 

2vo 
(M) 

where ltg, the cosine of the angle between Ko and the S 

coordinate axis, is l, ?It, or It for the gth mode, as s= 1, 2, 
or 3. This expression is valid for crystals of any sym
metry. It differs [rom Waterman'sl8 Eq. (5.1) in that it 
is written directly in terms of the stiffness constants. 
(Th e four-index notation is reduced to the two-index 
nOlation in the usual way: ij --. a, rs --. b j 11--.1, 
22 -~ 2, 33 --'3,23=32 --. 4,13=31--.5,12=21--.6.) 

Our results for K with direction cosines (O,m,,.) arc 
the following: For g= 10, A 10= (1,0,0) for antimony and 
bismuth and 

P1IO=0, (A7) 

- (pIOW)2 
P 2lO= (mCOO+ncH) , (A8) 

2VlO 

For g= 9 nnc! 11, we have AO= (0, 0.7513, 0.6599), 
All = (0, - 0.6599, 0.7513) for antimony and (0, 0.7696, 
0.6385) and (0, -0.6358, 0.7696) for bismuth j 
m=lt= 1/v'1. 

P10=0, 
_ (poW)2 

P20= ([lIIcll-1tcH]A 2°A 2u+[ -m2C]4 
2va 

(A 10) 

+ II{ C11+Cla}]A 2° A 30+mC44A aOA aU) , (All) 

+m[cH+cl3]A 2°A aO+l1C33A aOA 3°), (A12) 

The appropriate Pia for propagation in the (0, -1/V'l, 
1j\12,) direction follow from (A7)-(A12) by replacing 
±m with =F1II, and the g indices 9, 10, 11 with 12, 13, 
:lIlcl 14, respectively. The unit eigenvectors are A13 
= (1,0,0), A12= (0, -0.8625, 0.5060), A14= (0, 0.5060, 
0,8625) for antimony and (1,0,0), (0, -0.8421,0.5393), 
(0, 0.5393, 0.8421) for bismuth. 

In the cases discussed, Pl=O, a result to be expected 
when the excitation does not disturb the mirror sym
metry of the medium. The energy-flux deviation angle 
from the Z or Xa axis, ct, is tan-1 P 2/P3• 
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