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Elastic Constants of and Wave Propagation in Antimony and Bismuth

SEYMOUR EPSTEIN AND A. P. DEBRETTEVILLE, [Rr.

U. S. Army Electronics Laboratories, Fort Monmoutl, New Jersey
(Reccived 5 November 1964)

Ultrasonic wave velocities for 14 different modes were obtained on two dilferently oriented single-crystal
antimony cubes from the time between successive unrectified radio-frequency pulse echoes. This redundant
sct of data was fitted by a least-squares technique to Voigt theory to yield the six room-temperature adia-
batic elastic-stifiness constants. In units of 10 dyn/cm? ¢;;=99.4(1), c33=44.5(09), €44=39.5(5), cos
=34.2(3), c13=26.4(4), and c,y=+21.6(4), the positive sign for ¢y4 following from our choice of positive
Cartesian axes., When similarly treated, Eckstein, Lawson, and Rencker’s bismuth data yield in these same
units: ¢;1=03.22, ¢33=38.11, c44=11.30, ¢46=19.40, ¢,3=24.4040.09, ¢14=-7.20. Also included are a visual
method of fixing the laboratory coordinate system in antimony by means of an imperfect cleavage plane,
a calculation of the pure-mode directions in the mirror plane, a simple formula for choosing the nonextra-
neous valuc of ¢ys for trigonal crystals having six independent clastic constants without resorting to lattice-
stability criteria, and a calculation of the deviation of clastic-wave particle displacement and energy-flux di-
rections from the propagation direction. For waves propagating in the (0,1,1) and (0,i,1) directions, the
particle-displacement deviations for antimony and bismuth do not exceed 15 and 13°, respectively, and
corresponding energy-flux deviations up to 45° and 27° arc obtained.

o

I. INTRODUCTION

N the well-designed experiment of Eckstein, Lawson,
and Rencker! (hercinafter referred to as ELR),
trigonal bismuth’s six adiabatic elastic stiffness con-
stants were determined from measurements of acoustic-
wave propagation. An extension of their work to anti-
mony seemed natural, and a recently determined set of
antimony constants is desirable, considering both (1)
the fact that currently available antimony crystals arc
purer and less strained than those available to Bridg-
man® and (2) the different measuring technique. The
design of our experiment is essentially that of ELR, but
our data are principally taken on just two differently
oriented specimens, and our method of calculating the
elastic constants differs in that we use a least-squares
procedure. (IFor completeness and clarity of presenta-
tion we incorporate the basic data and equations given
by ELR, and other material as appropriate; the reader
is nevertheless referred to ELR for points not covered,
and for additional references.) In addition, an inspection
method of establishing laboratory axes in antimony is
described ; a simple formula is given for obtaining the
nonextraneous value of ¢13; the directions of pure-mode
propagation in the mirror plane are evaluated ; and the
directions of particle displacement and energy flux for
certain modes are calculated and compared with the
wave-propagation direction. ELR’s 14 bismuth veloci-
ties are also reanalyzed by our procedures, and a com-
parison between the two similar elements is made.

In the next section of this paper, some well-known
crystallographic and cleavage data for antimony are
introduced to provide a background for presenting the
convention used for choosing coordinate axes in the
crystal. This is followed by sections on the design of the
experiment, experimental detail and the method of
calculation of the constants. In the remaining sections

1Y. Eckstein, A. W. Lawson, and D. H. Reneker, J. Appl. Phys.
31, 1535 (1960).
2P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 365 (1925).

the limitations of our analysis, the elastic constants, and
acoustoclastic wave-propagation propertics in aniso-
tropic antimony and bismuth are discussed,

II. CRYSTALLOGRAPHIC DATA AND CLEAVAGE
PROPERTIES OF ANTIMONY

Like bismuth, antimony’s primitive cell is a 2 atom/
cell thombohedron (Ifig. 1) with one atom at each
corner and a ninth slightly displaced from the midpoint
in the (1,1,1) direction. The nearest-neighbor distances?
are 2.87 and 3.37A, the density is 6.7 g/cm?, the
rhombohedral angle is 57°6’, and the cell edge is 4.49 A
at room temperature. It is brittle. The principal
cleavage plane at room temperature is the (111) plane
and fracture occurs between atoms having the larger
nearest-neighbor distance; the secondary cleavage plane
is of the (211) type indexed in the primitive cell,58 and
is relatively imperfect. These latter planes, spoken of as
dominant secondary cleavage planes by one of us,’
intersect the (111) plane in lines giving the directions of
the three equivalent twofold axes. These axes are normal
to the mirror planes which contain the trigonal and
bisectrix axes. The plane’s position in relation to a
right-handed Cartesian coordinate system fixed in the
crystal, or what is equivalent, the position of the plane’s
Laue spot reflection, can be used (see Sec. IV) to dis-
tinguish between two possible choices for such coordi-
nate systems in which the signs of ¢4 and certain
magnetoresistance coefficients” change. Our choice of
coordinate system and the convention used to choose it

8 W. L. Bragg, Atomic Structure of Minerals (Cornell University
Press, Tthaca, New York, 1937).
(]:)((%.)S. Barret, P. Cucka, and K. Haefner, Acta Cryst. 16, 451

) ).

®C. Palache, H. Berman, and C. Frondel, Dona’s System of
Mincralogy (John Wiley & Sons, Inc., New York, 1955), Vol. 1.

* Relative to a hexagonal cell, this plane is of the (10i4) type.
Referred to a larger cight-atom-containing nearly face-centered
cubic cell, it is of the (011) type (also shown in Fig. 1).

" Seymour Epstein, J. Electrochem. Soc. 109, 738 (1962);
?{:gég;)ur Epstein and H. J. Juretschke, Phys. Rev. 129, 1148
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I'i6. 1. Primitive and nearly cubic
rhombohedral cells, stercogram of (011)
zone (normal to the page) of the nearly
cubic cell, specimen orientation and
positive-sensed Cartesian axes, and posi-
tion of two pronounced cleavage plances of
antimony. a1, @, and ay are the rhombo-
hedral-cell axis vectors for the primitive
cell and the outward dircction of the
projection of any one of them, a; for

13 example, on a plane normal to the unique
L2 T [111:‘ direction is taken as +V. a1+4aa

+-a, is chosen as -Z. A are the cell edges

\mncm; POINT
are arbitrary. So that the signs of ¢;4 for antiniony and
bismuth can be directly compared, we adopt 17LICs
specification for the positive-axes senscs, as shown in

Tig. 1.
The axes senses in the specimens were determined
upon indexing a Laue diagram. (See Sec. IV.)

III. DESIGN OF EXPERIMENT

As outlined by ELR and their cited references, the
six Voigt elastic stiffness constants for the class R3m are
represented by

61 ¢z ¢z cu 0
C12 C11 €13 —C14 0
cij= |63 ¢13 ¢ O 0
e —cu 0 e O
0 0 0 0 Cit  Ci4
0 0 0 0 C14 Cep

where ¢g6= (c11—¢12)/2. For acoustoelastic waves propa-
gating with direction cosines , 7, #, in this order rela-
tive to the X, ¥, and Z axes of a right-handed coordinate
system, three values for the velocities (one longitudinal
and two transverse) satisfy the Christoffel determinant.
Symmetry, however, prevents one from choosing six of
the nine possible modes which would allow the direct
(and accurate) determination of the six constants on
one simply shaped oriented specimen. Consequently, it
is necessary to employ a minimum of two differently
oriented single-crystal cubes and more than the mini-
mum of six modes required in principle to determine six
constants. All but ¢y; are best arrived at when (1) they
derive from velocities of three modes propagating along
each coordinate-axis direction on one specimen and (2)
the velocity data so obtained are self-consistent.
Accordingly, one of the two specimens needed is a cube
with faces normal to the principal axes. To determine
¢13 symmetry requires one to employ a mode propagat-
ing at any angle with the trigonal axis other than 0°,
90°, and 180° (plus four of the five previously discussed
constants)., Two directions (45° and 135° with the ¥

IMPERFECT CLEAVAGE PLANE, (01)

of the nearly cubic cell. ¥ is along

SSPERFECT CLEAVAGE PLAKE, (1) (3,1,1) and +X along [011]
%) '

axis in the V-Z mirror plane) exist for which ¢13 makes
its maximum contribution to the effective stiffness con-
stant, and our sccond cube is oriented with faces normal
10 these directions and normal to the X direction. To
insure that the five already determined values for the
constants are the same for this cube, velocity data are
obtained for its nine possible modes.

In all, 18 vclocity measurements are required. Be-
cause onc of them corresponds to a doubly degenerate
shear mode along the Z axis, and three others repeat the
modes along the X axis on the second orientation, only
14 velocities need be analyzed in detail. Clearly, these
must satisfly 8 redundancy relations for a meaningful
calculation of the six elastic constants. The 14 expres-
sions for the effective stiffness constants pv? are listed
in Table I. (The symbols v, through v;4 are chosen to
correspond to ELR’s arbitrary assignment.) Also in-
cluded are the wave-propagation and transducer-
polarization-direction cosines, the numerical values of
the averaged observed velocities, and the experimental
tolerances.

1V. EXPERIMENTAL DETAIL

The velocily of sound was determined by the ultra-
sonic pulse-echo method. A pulse width of approxi-
mately 2 psec wide was used and the distance between
the maximum amplitude of successive unrectified radio-
frequency pulses was used as a measure of the transit
time.? Transit-time error effects were also investigated
by means of the dummy-transducer method.! Times
were measured on a Tektronix 585A oscilloscope whose
timing circuit was checked with a counter (Hewlett-
Packard 524B) and a quartz signal generator (Tek-
tronix Time Marker Generator 180-S1). An Arenberg
PG-65-C pulse generator, preamplifier PA-620-B, and
wideband amplifier WA-600-B were used to generate
and amplify the pulses. An X- or Y-cut-quartz trans-
ducer of 10- or 5-Mc/sec fundamental frequency func-

8S. Eros and J. R. Reitz, J. Appl. Phys. 29, 683 (1958).
C. S. Smith and J. W. Burns, J. Appl. Phys. 24, 15 (1953).
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TanLE L Effective stiffness constant equations and experimental antimony velocities,
Direction cosines of Experimental
Eq. Effective stiffness constant equations propagation transducer velocity
No. (p, the material density) vector polarization 10% cm/scc
(1) anl=cyy 100 100 3.9242%,
(2) pr? =4[ (cootcae) + { (cas—cos)?+4c14?) 7 001 3.004:1.5%
@A) pvs* =4[ (cost-cae) = { (caa—coe)?+4c1 i)' ] 010 1.534:2.6%
4) pvt=ces=1%(c11—C12) 010 100 2.234:1.5%
(5) pvd =4[ (entca)+{ (caa—cn) 42} 7 | 010 3.98+1.7%
(6) pvet=}[ (cr1tcaa) — { (caa—enn)?H4ci) ' * 001 2.244-29%,
) Ut =cas 001 001 2.604=1.2%
8) pU=cun 100 or 010 2.4541.2%
9) 2pve*=4% (cn1tcaa) Fcu—cu
4 ( Genn—Acas—c10)?+ (cratcu—cia) '} 0, 1/V2, 1/V2 0,1/v2,1/v2 3.124-1.9%,
(10) 2pv1=4 (en+cas) Feu—cu
—{(Ben—3cas—c1)?+ (craFcaa—cia)* 12 0, —1/vZ, 1/VZ 1.25+19,
(11) pU1*= }(Cu'*-cu)-*-c'u 100 2.87:!:4.1%
(12) pvia?= 4 (costcaa) — 14 0, —1/v2, 1/V2 100 1.5410%,
(13) 2pv1? =% (ctit-cas) +cat-cua
+‘(§Cu—i€u+6u)’+ (c|;+¢:4r|'c|,|)2)'” 0, —1/\/2,1/\’2 4.14:‘:1.8%
(14) 2pv1 =% (cnt-can) +eautcn
0,1/vZ, 1/v2 1.5046%

tioned as the transmitting and receiving transducer.
Measurements were taken between 5 and 70 Mc. The
frequency which gave the sharpest pattern for a partic-
ular mode is the one at which the velocity was meas-
ured. These best frequencies were scattered throughout
this range. More than one frequency gave a decipherable
pattern for a given mode, but most frequencies did not.
It was, however, possible to obtain a crude check of the
frequency dependence of v7. This result together with
qualitative results for other modes at two frequencies
show no frequency dependence within the specified
experimental tolerances. '

Salol was used to bond the transducer to the speci-
men surface which was either a natural cleavage surface,
the (111) plane, for slab specimens, or a comparatively
rougher spark-cut surface for the two specimens whose
velocities were actually used to obtain the constants.
The slab specimens, cleaved at opposite faces and of
varying thickness and width, were used primarily to
check the effect of spark-cut surfaces on the coupling of
energy into and out of the specimens and on the reflec-
tion of energy at the back surface into the specimen. No
deleterious effects of spark cutting were seen. Another
experimental check is that our values for vy, v, and v;
are within 49, of Eckstein’s! 77°K velocities which are,
respectively, 3.85, 4.08, and 2.58 10° cm/sec.

Zone-refined antimony, Cominco Grade 69, 99.9999,
pure, was the stock for our slabs and cubes. (Initially,
stock which was very likely less pure was used and at
the few points where checks were made yielded essen-
tially the same results.)

The two differently oriented single-crystal cubes,

1Y, Eckstein, Phys. Rev. 192, 12 (1963).

12 mm on edge, were prepared by spark cutting!® their
faces within ==1° as required for our experimental
design. Strains were checked for by x-ray diffraction.

Back-reflection Laue diagrams were used to choose
the positive X, ¥, and Z axes directions. They were
indexed by identifying spots belonging to the (011) zone
(in the mirror plane) on cach side of the (111) pole (see
Iig. 1)—in particular, the (311), (4ii), (51i), (100),
(011), and (111) spots. (These indices are based on the
large, nearly cubic, rhombohedral cell containing 8
atoms; the notation is Vickers.)!

Part of Vickers’ stereogram is reconstructed in IFig. 1
in order to show the relative positions of the secondary
cleavage plane to the axes. This plane was positively
identified by comparing the angle between the second-
ary cleavage plane and the (111) plane as measured on
cleaved specimens, firstly with the estimated angle the
(011) spot makes with the (111) spot, and next with the
value for this angle given by Dana.? Our observations
of secondary cleavages on many antimony rods and
slabs show this plane to be easily observable and to
slant in a unique direction. Accordingly, a convenient
way of identifying the right-handed coordinate system

used in the crystal is shown in Fig. 1. With the planes.

sloping downward to the right, the positive ¥V axis is
directed from left to right, positive X toward the ob-
server, and positive Z upward.

V. EXPERIMENTAL ANALYSIS AND RESULTS

Our velocity values, shown in Table I, represent
averages of the average velocity calculated from meas-
1 H., J. Ehlers, D, F. Kolesar, Rev. Sci. Instr, 34, 1054 (N)

(1963).
12V, Vickers, J. Metals 9, 827 (1957).
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urements of the time between successive echoes e
over periods of wecks. They are rounded off to the st
significant figure and the tolerances represent the larger
of the fluctuations in these or the accuracy of a specilic
measurement. Transit-time errors attributable to the
transducer, determined after all the velocity data were
completed, are about 1%,. They are not applicd because
(1) they could not be systematically obtained, (2)
except for vy’s they are less than the over-all velocity
tolerances specified for each velocity, and (3) we have
no information on the fluctuations in the transit-time
correction measurements themselves. Taken at face
value, a 19, average corrcction to the velocities would
scale the antimony stiffness values by 2%,.

Before the numerical evaluation of the constants was
carried out, the general features of the velocity data
were examined for consistency with the equations of
Table I as follows: 19 being greater than 5 clearly fixes
¢14 as positive for the axes senses chosen. In turn, this
requires that v12?v4? be greater than ve®v11%; v2*> v10%;
132> 3% ; and v,9°>v?, which is indeed the case within
experimental error. These inequalitics are compatible
with assigning the larger velocity value of two coupled
modcs, normally associated with the longitudinal mode,
to the positive radical of the relevant expressions, i.c.,
in the pairs v, and v, v4 and vg, vy and vy, and v,y and
14, the first velocity is the greater one. Next, the cight
redundancy relations, a more sensitive and detailed test
of the data than the trace relations used by ELR, were
evaluated ; one obtains that v;,=1.25419%, for antimony
is incompatible with the others in this formalism.
Consequently, attempts to fit to it and its inclusion in
a least-squares function are meaningless and it is ignored
in our calculation of antimony’s constants. A possible
reason for v1y’s incompatibility is discussed in the section
on elastic-wave refraction.

Generally stated, our least-squares procedure is hased
on adjusting each of the 14 squares of the velocities
within experimental error so that they give a minimum
deviation from the central experimental-velocity-
squared values and, when inserted in Eqs. (1) through
(14), yield a common value for each of the six stiffness
constants. '

pEBRETTEVILLE, Jr.

The least-squares function used is

14 'Ul'uz—vl'o2 s
F=3 ( ) ’
=1\ 204,40

where the subscripts @ and o signify adjusted and ob-
served, and Av, is the experimental uncertainty in the
ith velocity. This task is simplified by initially selecting
those velocities and combinations of velocities which
are related to the smallest number of stiffness constants
and then extending the selection in steps to include more
and more velocitics until all the constants are obtained.
As more velocitics are included, the previously obtained
values are readjusted when necessary. Specifically, first
2%, 15, vio*+v1s?, and v*+v,? are adjusted and ¢4 and
cgs obtained. With these values and 9;°—713* and
2*— 4%, a common value for ¢y4 is obtained, usually upon
readjustment of the previously obtained velocities and
constants. After this, ¢qy is similarly obtained but from
0%, v+vg%, and (v—1%)?, and ¢33 from v%, 9y°4-2,,%, and
v+ Finally ¢13 is obtained from (vp—v1;%)? and
(m2*—v1%)?% again readjusting the alrecady obtained
values as necessary. Because each of the functions from
which 613 is caleulable yields two values, the common
onc is, of course, the proper one. (Antimony calculations
involving incompatible 4y are omitted.)

The results of this procedure for antimony and for the
complete bismuth data of ELR, and the results of other
workers and their procedures, are presented in Tables
II, TTI, and IV, These are next discussed.

VI. DISCUSSION )
A. Nature and Limitations of Fit

In the course of fitting the antimony data, it became
clear that the 14 equations of Table I intersect in a
well-defined region of a 6-dimensional stiffness-constant
space and that only a very narrow range of values for
the constants is possible. The bounding limits of this
region are, roughly, such that a change greater than 5%,
in almost any constant appears sufficient to bring one
or more of the 14 velocities outside the experimental
range. Accordingly, the basis for choosing the constants

TasLE IL Elastic stiffness constants at room temperature.

11 12 c1s €14 c3 Ci Coo Source
Sh 99.4(1)  30.9(1)  26.4(4) +21.6(4)  44.509)  39.5(5)  34.2(5) This work, least squares
99.31 44.59 Eckstein,® transmission
technique at 77°K
81.00 11.00 -+18.00 43.60 33.60  35.00 Leventhal,® echo technique
79.20 24.70 26.10 +11.00 42.70 28.50 27.30 Bridgman,® static technique
Bi 63.22 24.42 24.8(9) + 7.20 38.11 11.30 19.40 ELR,? least-squares recalculation
=+,
63.50 24.70 24.50 + 7.23 38.10 11.30 19.40 ELR,? transmission technique
21,50 + 7.20 Kor’s,® recalculation of ELR
62.90 35.00 21.10 — 423 44.00 10.84 13.37 Bridgman,® static technique

Units: 10 dyn/cm?®,

s See Ref, 10, b See Ref, 13, °See Ref, 2, dSee Ref. 1. e Sce Ref. 14.
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TasLE IIL Elastic compliance constants at room temperature.
Su —S12 =S — S S S Ses Source
Sb 16.2 6.1 5.9 12.2 29.5 38.6 44.6 This work, least squares
17.7 3.8 8.5 8.0 33.8 41 43 Bridgman®
Bi 25.74 8.01 11.35 21.50 40.77 115.90 67.51 ELR,® least-squares recalculation
26.9 14.0 6.2 —16.0 28.7 104.8 81.2 Bridgman®
Units: 1073 cm?/dyn. :
* See Ref, 2, bSee Ref, 1.
TasLE IV. Calculated and experimental limits of velocities.
Sh Bi
Lower Least-squares Upper Lower Least-squares ELR Upper
exp limit calculation exp limit exp limit calculation calculation exp limit
0 3.84 3.85(2) 4.00 2.518 2.540 2.545 2.562
U2 2.95 2.‘)650) 3.04 1.541 1.552 1,635 1.559
U3 1.49 1.50(1) 1.57 0.851 0.851 0.667 0.859
v 3.91 3.98(5) 4.05 2.553 2.559 2.565 2.589
U 2.20 2.26(0) 2.27 1.398 1.407 1.406 1.416
Vg 2.19 2.2054) 2.28 1.016 1.026 1.026 1.028
vy 2.57 2.58(0) 2.63 1,057 1.971 1.571 1.987
" 2.42 2.43(0) 2.47 1003 1.073 1.073 1.085
Uy 3.06 3.17(0) 3.18 2,003 2.067 2.109 2.101
1o 2.75 2.95(6) 2.98 1.505 1.517 1.518 1.539
o 1.24 1.86(6) 1.26 1.144 1.147 1.071 1.156
V12 4.06 4,17(5) 4.21 2.400 2,437 . 2.491 2.482
U3 1.38 1.50(9) 1.69 0.907 0.912 0.910 0.913
1.41 1.56(2) 1.59 1.049 1.508 0.937 1.061

V14
Units: 10 cm/scc.

was relaxed to obtaining a near-least-squares minimum
fit. We estimate our values, presented in Table IT, to be
within about 2%, of a true least-squares minimum
fit and we note that such a fit would be as uneven as the
fit presented.

When applied to ELR’s bismuth data, our procedure
yiclds essentially one set of constants except for ¢i3
which may range within =40.09 of the value given
without causing any one velocity to be calculated
outside its experimental limit. That one set of values
obtains is readily evident from the facts that our values
differ little from ELR’s, yet five of their calculated
velocities are outside the experimental range and just
one of ours is at the lower experimental limit. This fit is
characterizable as even and quite good, considering the
very small velocity tolerances ELR specify.

B. Comparison of Constants and Direct
Calculation of cy;

Included in Table II with our constants arc ¢;; and
cas calculated from Eckstein’s®® 77°K velocity data for
antimony, ELR’s bismuth constants values, hismuth
and antimony values calculated from Bridgman’s® early
isothermal compliance measurements, unpublished
antimony values of Leventhal® and some calculated
bismuth values of Kor.* Agreement with Eckstein’s ¢,

13 E. Leventhal, MS thesis, Polytechnic Institute of Brooklyn,

New York, 1959 (unpublished).
U S. K. Kor, Physica 28, 837 (1963).

and ¢33 for antimony has already been pointed out in
Sec. IV (by noting that his »; and »; and ours are the
same) ; and except for ¢11, agreement with Leventhal is
fair. Although the nature of our original stock and our
method of preparation are preferable to Leventhal’s,
we cannot account for the discrepancies on the basis
that our crystals are purer and less strained. We have
alrecady noted that v»; and vy were also obtained on
cleaved surfaces and that these values agreed well with
the values obtained on our cube. The purity of the
cleaved specimen was less than that of the cube (al-
though very likely still purer than Leventhal’s). Fur-
thermore, v, and v;; were again measured after the speci-
men was (accidentally) damaged. A 3-mm transducer
was placed next to the cracked region where no visible
signs of damage were obvious ; no change in the velocity
values were found.

Our recalculation of the bismuth constants yields
essentially ELR’s values within about 19 or less. Com-
pared to Bridgman’s results, our individual constants
fit poorly for both antimony and bismuth, even allowing
for the Targe cumulative error introduced for some of the
constants by the inverse tensor transformation-and-the
negligibly small isothermal corrections. Uniform and
over-all agreement is not necessarily to be expected
since some of his individual values are adjusted to fit
his linear and volume compressibilities. On the other
hand, the compressibilities calculated from our data do
agree with his directly measured unadjusted compressi-
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*\T\ LE V. Linear and volume compresslbxhllcs
Unlls lO"’cm’/dync —

Sb Bi
ELR,
This work Bridgman® recalculated Bridgman»
(Ref. 2) (Ref. 2)
ke 4.1 5.40 . 6.38 3.59
ks 17.5 16.84 18.07 16.13
ke 25.8 27.64 30.83 29.31

» Isothermal values; Isothermal-adiabatic correction is negligible,

bilities (Table V) within appropriately calculated
tolerances.

Agreement with Kor’s nominal value for ¢13 is not
expected for it is extremely sensitive to the velocitics.
Kor calculates ¢3 from particular ELR velocities with-
out first adjusting them to be compatible with the
others. Consequently, our value for ¢y3 is to be preferred.

¢13’s extreme sensitivity can be appreciated from the
following formula:

P* (V12a*+0140") — p* (0a*+2114")

C13= (611+26-M),
2c14

where the symbols have their previously defined mean-
ings. In principle, this expression can be used to calcu-
late ¢15 directly, the extraneous root introduced by the
quadratic already having been eliminated. We cm-
phasize that properly calculated velocitics and con-

stants must be inserted unless one is willing to accept an
unccrt.unty of 1009, or more, and note that the vilue
of ¢13 1s, as it should be, independent of the convention

used to determine the sign of ¢y4 as the signs ol the
velocity function in the numerator and ¢y change
together. With this formula, it is necessary ncither to
employ the sign considerations outlined by Mayer and
Parker!® nor the conceivably less-discriminating strain-
energy stability criteria.!® An analogous expression for
¢13 in hexagonal systems, where ¢14 is identically zero, is
not possible.

C. Elastic-Wave Refraction

In our attempt to understand vy,’s incompatibility
for antimony, the 45° and 135° data were [urther
analyzed in terms of the theory of plane elastic waves
in aelotropic media.'” Particle displacement and cnergy-
flux directions, and the pure-mode direction in the V-7
mirror plane, are calculated for both antimony and
bismuth and compared with each other, and with the
propagation and transducer-polarization directions. An
outline of the calculation and the energy-flux expres-

15 W, G. Mayer and P. M. Parker, Acta Cryst. 14, 725 (1961).

16 G, A.Alersand J. R. Nclghbors,] Appl. Phys. 28, 1514 (1957);
L. J. Teutonico, #bid. 32, 119 (1961).

M. J. P. Musgmve, Proc. Roy Soc. (London) A226, 339
(1954); P. C. Waterman, Phys. Rev. 113, 1240 (1959); P. E.
Borgms, ibid. 98, 1000 (1955); A. E. H. Love, A Trealise on the

Mathematical Thcory of Elaslmly (Dover Publications, Inc.,
New York, 1944).

sions obtained are given in the Appendix; the results

of this calculation, summarized in Fig. 2, are next
discussed.

Our analysis shows that the unit displacement eigen-
vectors associated with the »y and v;; modes, 4° and
A", deviate by —4° for antimony and —35.2° for
bismuth from the transducer polarization directions
used to excite these modes. This small value is favorable
for exciting the o5y mode in antimony, giving rise to the
three well-defined pulses displayed by the oscilloscope.
This same display obtains with either the 3-mm-
diameter or the j-in-square transducers. The cor-
responding deviations for A4 and A" are +14.6° for
antimony and --12.4° for bismuth. These deviations
are not of a nature which would explain our egregious
21y, nor do the pure shear-mode directions in the V-Z
plane which are 117° for antimony and 107° for bismuth,
However, the deviation of the energy flux, or ray
velocity, from the normal is about 45°, I'or our dimen-
sions, energy is deflected from a side before reaching the
opposite reflecting face. Upon defllection the energy is
refracted into spurious modes, giving rise to the pulses
displayed. No pulse was found that corresponds with
;1 calculated. This is due to the fact that in relation to
the large intrinsic attenuation of antimony not enough
energy [lows along the wave-normal direction to reach
the opposite face and to be echoed back to the trans-
ducer for detection.

We note that the smaller the flux deviation angle, the
more numerous and better defined are the echoes, and
that spurious pulses exist for almost every mode.
Conical refraction eflects along the triad axis, predicted
by Waterman,'” verified by Papadakis on rock salt and
calcite,’® and noticed by ELR in bismyth, did not
interfere with obtaining decipherable echo patterns.
Tor antimony the conical semi-angle in 28°40’; for
bismuth, 32°30".

Refraction effects were observed for either the 3-mm-
diam or 3-in-square transducers as sender-receiver.
Many of the displays obtained with the larger one con-
tained more spurious pulses than most displays ob-
tained with the smaller one, depending apparently upon
the propagation direction and the mode.

It is not possible for us to comment on the effects of
the large deviation angles in bismuth since we do not
have precise information on ELR’s specimen geometry.
We can only remark that the combined effects of

specimen size, refraction, and attenuation are not as.

severe as they are in antimony. All of ELR’s velocities
are compatible and Eckstein' reports that his antimony
echo displays are not as clean as they are for bismuth.

D. General Comments

Our experiment and analysis are based on plane
elastic waves in extended media, and our specimens are

"E Paﬁadakls, J. Appl. Phys. 34, 2168 (1963).
9y, Eckstein (private commumcatlon)
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T16. 2. Energy density flow, displacement, propagation and pure-mode directions in ¥-Z mirror plane. §x* is the angle between the
vectors K and s where s is any of the vectors 42 and Pe. The signs for §x* indicate placement at opposite sides of K with +§ counter-
clockwise. Parts (a) and (b) are for antimony, (c) and (d) for bismuth; (a) and (c) are for the 45° modes, and (b) and (d) for the 135°

modes.

of finite dimensions. For isotropic circular bars the
dilatational and distortional wave phase velocities have
been shown by Pochhammer®# to depend on the ratio
of the cross section radius to wavelength a/A and upon
two functions of the Lamé stiffness constants. Chree®
extended Pochhammer’s results to noncircular, normal

W A. E. H. Love, A Treatise on the Mathemalical Theory of
Elasticity (Dover Publications, Inc., New York, 1944), p. 287.

 H. Kolsky, Stress Waves in Solids (Dover Publications, Inc.,
New York, 1963), p. 54.

% A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, Inc., New York, 1944), p. 290.

]

cross-sectioned cylinders and to nonisotropic media. In
the absence of an exact treatment giving the longi-
tudinal and two transverse phase velocities in aniso-
tropic cubes it is reasonable to assume that the size of
the correction for each phase velocity would be different.
If these corrections are large in relation to the experi-
mental errors, fitting the plane-wave formalism of
redundancy eight to the 14 corrected velocities is not
assured. That we are able to do so, however, suggests -
that the corrections are not significant. Our large
minimum value of about 25 for £/A, where % is the radius
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of gyration of our noncircular section, suggests that
these corrections would also be negligible for data with
much narrower tolerances than we are able to specify.
Our data cannot directly support this conclusion for it

is possible that our large tolerances result in part from
these effects.
Within the context of the above consideritions, we

believe our experiment to be a reasonable compromise
as regards both the use of the plane eclastic wave
formalism in extended media for our finite sized speci-
mens, and the use of predominantly energy-refracting
modes in determining the elastic constants. Judging
from the topological fitting procedure presented, we
estimate that the values given are accurate to within
about 59%,.

APPENDIX I

In this section, we outline the general procedure used
to calculate the energy flow components and present the
expressions obtained for the 45° (fm,n::0,1/V2,1/V2)
and 135° (,mm::0, —1/v2, 1/V2) propagation dircc-
tions.

The ith Cartesian component of cnergy flow, /7, is
given by Love™ as the negative of the scalar product of
the component of the stress tensor on the surface normal
to the 4th direction, T;, with the particle displacement
velocity u:

P.'=—T3'I'l. (Al)

The displacement
u=pA exp(j(w—K-1)) (A2)

has components #; where ¢ runs from 1 to 3 correspond-
ing to the #, ¥, 2 or a3, ay, a3 directions. A, K, and r are
in this order the particle displacement eigenvector of
unit magnitude, the wave propagation vector, and the
field point vector, and have components 4., K, x:. p is
the scalar amplitude of the displacement; T; has com-
ponents Xy, 7=1,2,3. These are related in the usual
way to the strains e,, through the stiffness constants by

Xy=cijra(148,0)ers/2 (A3)

summed for 7,s=1,2,3; é,, is the Kronecker dclta. In
terms of the displacements,

o, Ou,
en=< +’—)/ (1+6n) .
dx, O0x,

For a particular mode g, the components of displace-
ment, written as

o= 247 exp[j(wi—Ko-1)],

are substituted into (A1) and (A4), and the result of
substituting (A4) into (A3) in turn put into (A1). We
finally obtain

(A4)

(AS)

— (in)z

Pyo= 6.-],-,/1,"44 r"l.’, (AG)

2v,

EPSTEIN AND A. P. pEBRETTEVILLE, Jr.

where /,%, the cosine of the angle between K¢ and the s
coordinate axis, is /, m, or u for the gth mode, as s=1, 2,
or 3. This expression is valid for crystals of any sym-
metry. It differs from Waterman’s'® Eq. (5.1) in that it
is written dircetly in terms of the stifiness constants,
(The four-index notation is reduced to the two-index
notation in the usual way: ij—a, rs—b; 11— 1,
22—2,33—3,23=32—4,13=31—15,12=21—.)

Our results for K with direction cosines (0,m,1) are
the following: For g=10, A= (1,0,0) for antimony and
bismuth and

P=0, (A7)
— (plow)z -
Pyl0= (messtncu) (A8)
V10
— (p10)2
M= (meytnceun) . (A9)
V10

Ior g=9 and 11, we have A’= (0, 0.7513, 0.6599),
AM= (0, —0.6599, 0.7513) for antimony and (0, 0.7696,

0.6385) and (0, —0.6358, 0.7696) for bismuth;
m=n=1/V2.
Py=0, (A10)
— ( aw)ﬂ
Pyr= : (Cmen—nerJA 224 29[ —m2es
Vg
+n{eutcrs) JA 27437+ meisd 37 A59), (A1)
- (in)Z
Pyo= (C—mertncauA 27450
Uy
+m[:6u+613]/1 2'/‘ 3”+71633A 3”/1 3"). (A12)

The appropriate P;? for propagation in the (0, —1/v2,
1/V2) direction follow from (A7)-(A12) by replacing
=£m with Fm, and the g indices 9, 10, 11 with 12, 13,
and 14, respectively. The unit cigenvectors are A"
= (1,0,0), A*= (0, —0.8625, 0.5060), A= (0, 0.5060,
0.8625) for antimony and (1,0,0), (0, —0.8421, 0.5393),
(0, 0.5393, 0.8421) for bismuth.

In the cases discussed, P1=0, a result to be expected
when the excitation does not disturb the mirror sym-
metry of the medium. The energy-flux deviation angle
from the Z or X; axis, a, is tan™! Py/Ps.
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